Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy

نویسندگان

  • Xin Zhao
  • Zhihua Feng
  • Karen K. Y. Ling
  • Anna Mollin
  • Josephine Sheedy
  • Shirley Yeh
  • Janet Petruska
  • Jana Narasimhan
  • Amal Dakka
  • Ellen M. Welch
  • Gary Karp
  • Karen S. Chen
  • Friedrich Metzger
  • Hasane Ratni
  • Francesco Lotti
  • Sarah Tisdale
  • Nikolai A. Naryshkin
  • Livio Pellizzoni
  • Sergey Paushkin
  • Chien-Ping Ko
  • Marla Weetall
چکیده

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacology of a central nervous system delivered 2'-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates.

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we...

متن کامل

Pharmacology of a Central Nervous System Delivered 29-O- Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer ofSMN2 exon 7 inclusion and SMNprotein expression, and improves function and survival of mild and severe SMA mouse models. Here, we d...

متن کامل

Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset.

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in cl...

متن کامل

Somatic Therapy of a Mouse SMA Model with a U7 snRNA Gene Correcting SMN2 Splicing

Spinal Muscular Atrophy is due to the loss of SMN1 gene function. The duplicate gene SMN2 produces some, but not enough, SMN protein because most transcripts lack exon 7. Thus, promoting the inclusion of this exon is a therapeutic option. We show that a somatic gene therapy using the gene for a modified U7 RNA which stimulates this splicing has a profound and persistent therapeutic effect on th...

متن کامل

SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice.

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016